
Origin Software Reference Guide
Creating User-Defined ASCII Files and
Reports

Revision B
October 2023

Introduction
The document explains how you can use XSLT style sheets to create custom files and reports for
Spectra Geospatial Origin software on the controller or on a computer using a downloaded JobXML file.

The information provided in this document is designed to provide an initial understanding of how XSLT
style sheets are able to be used to create custom files and reports on the controller running the Origin
software, or on a computer using a downloaded JobXML file.

There is a wealth of information dealing with the use of XSLT style sheets and XML files available on the
Internet, and the documentation associated with the MSXML SDK also provides a very good starting
point.

In addition, you can study the XSLT style sheets that have been provided with the Origin software.
These style sheets include a number of useful functions that have been put together and included in
the files, even if they are not actually being used in a given transformation. These style sheets can also
provide a good starting point for any new style sheet development.

Custom import/export file formats
You can create custom import or export files on the controller from the data in the currently selected
job from within the Origin software. The file is stored in the Spectra Geospatial Data folder on the
controller.

To create custom files from Origin, in the Job screen tap Export.

The following file formats are internally defined in the Origin system:

l Comma delimited (*.csv, *.txt) – control is provided for the order of the coordinate values

l SC Exchange

l SDR33 DC

l Trimble DC v10.0

l Trimble DC v10.7

l JobXML

Additional formats are created using XSLT style sheet definitions. Any XSLT style sheet (*.xsl) definition
files present in the Spectra Geospatial Data folder are listed as available formats. Create appropriate
style sheet definition files to add extra export options to your system.

Creating Custom Files and Reports for Origin Software | 2

When you select an XSLT style sheet-based format, the Origin software carries out the following steps:

1. Creates a JobXML format file from the current job.

2. Applies the style sheet to the JobXML file to create the defined custom file. This application of the

style sheet to the JobXML file is done using standard Microsoft® XML object functionality as follows:

a. The JobXML file is loaded into an IXMLDOMDocument object.

b. The selected style sheet is also loaded into an IXMLDOMDocument object.

c. The transformNode method is called on the JobXML object passing in the style sheet object to

control the transformation.

d. The transformNode method returns the transformed data, which is saved to the project folder.

The created file is named according to the current job name and uses the file extension defined

in the style sheet (or defaults to .txt if no file extension is defined in the style sheet).

3. Deletes the created JobXML file.

You must create the XSLT style sheet definition files according to the XSLT standards as defined by the
World Wide Web Consortium (W3C). For more information, see www.w3.org. You must structure the
style sheet definition files to use JobXML format files as their source data. The schema definition for
the JobXML file format is in the header of every JobXML file.

A number of sample style sheet definition files are provided with the Origin software. These style sheet
definition files add extra file output formats and also provide sample style sheet files that you can use
as a basis for creating new format definitions. There are sample style sheets that you can use to create
HTML reports of stakeout point coordinate deltas and check shot observation details directly on the
controller.

To successfully develop new style sheet definitions, carry out the development work on an office
computer using a suitable XML file utility program such as the File and Report Generator utility. To
download this utility, go to the Software and utilities page of the Spectra Geospatial Origin Help Portal .
If you use another XML file utility program, it must be able to apply XSLT style sheets to XML data files
and present the output file result. A utility program that provides good debugging facilities is an
advantage.

JobXML files that you can create on the controller, or by using the File and Report Generator utility,
must be used as the XML data files to which the style sheet under development is applied. Use the
JobXML file schema definition to provide details of the JobXML file format.

Creating Custom Files and Reports for Origin Software | 3

http://www.w3.org/
https://survey.help.spectrageospatial.com/Origin/latest/en/Downloads-software.htm

Custom reports
You can use XSLT style sheets on a computer to create user definable reports (such as in HTML format)
using the data contained in JobXML files downloaded from the controller. This allows the data
contained within the JobXML file to be presented in appropriate standardized formats.

You can use the File and Report Generator utility to apply XSLT style sheets to JobXML files and output
formatted report files. To download this utility, go to the Software and utilities page of the Spectra
Geospatial Origin Help Portal .

Style sheet definitions
The style sheet definition files that are used to transform Origin JobXML files to other formats are XML
files that have been written using the eXtensible Stylesheet Language Transformations (XSLT)
language. This language has developed from the earlier eXtensible Stylesheet Language (XSL). The
XSLT language is designed to transform data by parsing an input XML document into a tree of nodes,
and then converting the source tree into a result tree (file). XSLT can be viewed as a programming
language for processing XML data, that is, transforming XML documents.

To use XSLT style sheets to transform XML files, you must have Microsoft® XML Core Services (MSXML)
installed. The operating system that is installed on Windows controllers has MSXML included so that the
software can carry out the transformations that are required to create custom files through XSLT style
sheets.

NOTE – To download the MSXML SDK documentation, go to https://docs.microsoft.com/en-
us/dotnet/api/system.xml. This SDK documentation provides useful detailed information about XSLT
syntax and the associated XPath language used for addressing and filtering the elements and text of
XML documents.

If you download and install the File and Report Generator utility from the Spectra Geospatial website,
the MSXML components are also installed.

Because XSLT style sheets are XML files, the XML declaration (<?xml version=“1.0”?>) will usually
appear as the first line in the file. This XML declaration is not required but, if used, it must be the first
line in the document and must not be preceded by any other content or white space. The XML
declaration can also include an encoding declaration, for example, <?xml version=”1.0” encoding=”UTF-
8”?> to identify which encoding standard is used to represent the characters in the document. By
definition, XSLT files must conform to XML file format standards. There has been no attempt made in
the following notes to describe XML file format requirements.

Creating Custom Files and Reports for Origin Software | 4

https://survey.help.spectrageospatial.com/Origin/latest/en/Downloads-software.htm
https://docs.microsoft.com/en-us/dotnet/api/system.xml
https://docs.microsoft.com/en-us/dotnet/api/system.xml

<xsl:stylesheet > element
The XSLT style sheet must have a style sheet declaration. The style sheet declaration is the
<xsl:stylesheet> element. The attributes of this element must declare the version of XSLT, and must
include at least one name space declaration as follows:

l The XSLT version: version=”1.0”

l The xsl namespace: xmlns:xsl=http://www.w3.org/1999/XSL/Transform

This means that the style sheet declaration is:

<xsl:stylesheet version=”1.0” xmlns:xsl=http://www.w3.org/1999/XSL/Transform>

Other name space declarations may be included, but instructions associated with other name spaces
may not be processed. However, if you are designing a style sheet to use on a computer to produce a
specific report or file format from a JobXML file, then you may be able to use scripts to carry out extra
processing that is not possible with the XSLT commands alone.

All the commands used to process the JobXML file must be included within the <xsl:stylesheet>
element, so this means that the style sheet definition will end with a </xsl:stylesheet> line.

Within the <xsl:stylesheet> element, a wide range of XSLT elements can be included to carry out the
actual processing. A number of the elements that are useful for creating files or reports from JobXML
files are listed below, along with some notes about their use, and examples of how they are used in the
XSLT style sheets supplied with the Origin software. This is by no means a definitive list of the possible
elements and functions that can be used. These notes are designed to provide some assistance in the
creation of XSLT style sheets, based on the experience of defining style sheets for use on the
controller.

<xsl:output> element
This element specifies a number of options that affect the result of a transformation. Important
options for use in the creation of custom files or reports are:

l Method=”html” or “text” – If creating a report, set the method to “html”. If creating a file, set the

method to “text”.

l Omit-xml-declaration=”yes” – Indicates that the XML declaration should not be included in the

output file.

<xsl:variable> element
Variables containing specific values can be declared in a style sheet using the <xsl:variable> element.
The name attribute is used to specify the name of the variable and the select attribute can be used to
assign a value to a variable. The select attribute can either directly assign a value or it can reference a

Creating Custom Files and Reports for Origin Software | 5

node in the JobXML file being transformed, in this case the variable will receive the contents of the
referenced node.

The following details should be considered when working with variables in an XSLT style sheet:

l A variable can be assigned a value only once. This means that it is not possible to carry out a

computation using a variable and then reassign the new value to the original variable.

l Following the initial declaration of a variable in the <xsl:variable> element, all subsequent uses of

the variable must be prefixed by a $ character. For example, <xsl:variable name=”size”

select=”10.5”> defines a variable called size and assigns it a value of 10.5. Any time this variable is

used later in the XSLT style sheet it must be referenced as $size.

l Any variable defined under the <xsl:stylesheet> element and not within an <xsl:template> (sub-

routine) element, can be considered as a global variable and therefore available within any

<xsl:template> element.

l Any variable defined within an <xsl:template> element has its scope limited to the <xsl:template>

element and so is a local variable to that element.

Some specially named variables have been included in the style sheets for specific use by the Origin
software. These variables, or additional ones, could be included for use by any application program that
transforms JobXML files using XSLT style sheets.

The specially named style sheet variables used by the software are as follows:

fileExt variable
The fileExt variable (name=”fileExt”) is used by the Origin software to determine the file extension
(included in the select attribute) that should be used for the output file being created. If no fileExt
variable is defined in a XSLT stylesheet being used by the software, then a default file extension of .txt
is used.

User variables
User variables are used to display appropriate fields on the controller screen to allow the user to enter
specific values. These values can then be used within the style sheet definition to control the output
data.

All user variables must be identified by an <xsl:variable> element definition with the variable name
(name attribute) starting with 'userField' (case sensitive) followed by one or more characters uniquely
identifying the user variable definition.

Creating Custom Files and Reports for Origin Software | 6

The text within the select attribute for the user variable description, references the actual user
variable, and uses the '|' character to separate the definition details into separate fields as follows:

l For all user variables, the first field must be the name of the user variable itself (this is case

sensitive). The second field is the prompt that appears on the controller screen.

l The third field defines the variable type – There are four possible variable types: Double, Integer,

String, and StringMenu. These variable type references are not case sensitive.

l The fields that follow the variable type change according to the type of variable as follows:

l Double and Integer

Fourth field = optional minimum value

Fifth field = optional maximum value

The Origin software uses these minimum and maximum values to validate entries.

l String

No further fields are needed or used.

l StringMenu

Fourth field = number of menu items

Remaining fields are the actual menu items – the number of items provided must equal the

specified number of menu items.

The style sheet must also define the variable itself, named according to the definition. The value within
the select attribute is displayed in the software as the default value for the item.

The following shows an example of a user variable definition:

<xsl:variable name=”userField1” select=”'HzSOTol|Stakeout horizontal tolerance|double|0.0|1.0'”/>

<xsl:variable name=”HzSOTol” select=”0.02”/>

The Origin software uses these special variables as follows:

l After the XSLT style sheet has been loaded into its IXMLDOMDocument object the software scans

the object to look for the fileExt variable and any userField variables.

l If the software finds the fileExt variable, it reads the file extension to be used from the select

attribute. The following file extensions are not valid for use with created custom files on the

controller: .job, .sty, .xsl, .ggf, .pgf, and .pjg. If they are assigned, an error message is displayed.

Creating Custom Files and Reports for Origin Software | 7

l When a userField variable is found, the software reads the user variable definition from the select

attribute, and then processes the definition to determine the type of variable and its associated

details. These details are used to determine how the user field is displayed on the screen. The

software also locates the actual variable associated with the userField and reads its value, so that

this can be presented as the default value on screen. Where applicable, any changes made to the

user fields on screen are validated using the associated details. Prior to the transformation of the

JobXML file, the values for the variables are updated in the style sheet IXMLDOMDocument object,

so that any modified values are used during the transformation. The original style sheet .xsl file is

not changed, so any default variable settings will remain unchanged.

Different values can be assigned to a variable based on choices made within the <xsl:variable> element
definition itself.

Consider the following <xsl:variable> element definition that uses the <xsl:choose>, <xsl:when>, and
<xsl:otherwise> elements to assign different distance conversion factors to the DistConvFactor
variable, based on the setting of the DistUnits variable:

<xsl:variable name=”DistConvFactor”>

<xsl:choose>

<xsl:when test=”$DistUnit='Metres'”> 1.0

</xsl:when>

<xsl:when test=”$DistUnit='InternationalFeet'”>

3.280839895

</xsl:when>

<xsl:when test=”$DistUnit='USSurveyFeet'”> 3.2808333333357

</xsl:when>

<xsl:otherwise> 1.0

</xsl:otherwise>

</xsl:choose>

</xsl:variable>

The test item in the <xsl:when> element evaluates the associated test expression to a Boolean true or
false.

NOTE – There is no select attribute in this case, but the variable is still assigned the result of the
<xsl:choose> element.

Creating Custom Files and Reports for Origin Software | 8

<xsl:decimal-format> element
Use this element to specify the formatting for numeric values formatted using the format- number()
function. The significant attributes that should be set in this element are:

l name=”xxxx” – specify a name for this format for later use in the format-number() function.

l decimal-separator=”.” or “,” – set the decimal separator as appropriate for US or European style

presentation.

l grouping-separator=”,” or “.” – set the grouping separator as appropriate for US or European style

presentation.

l NaN=”xxxx” – specify an appropriate string to be used for the presentation of ‘Not a Number’ (Null)

values. Suitable strings for use as null values could be ‘?’ or ‘Null’.

These decimal format settings apply only to strings returned by the format-number() function and not
the XPath number() function. Therefore, the value returned from the number() function for a null value
will be NaN, and not the string specified in the <xsl:decimal-format> element.

With European number formatting, there are a few important items to consider when defining XSLT
style sheets:

l If using any European formatted values for computations in a style sheet it is necessary to first

convert the decimal point character from a comma to a dot. This can be done using the XPath

translate() function. For example, if a variable $value contains a European formatted number then

the following command can be used to return a value in US format:

translate($value, ',', '.')

l If defining a variable and assigning it a numeric value in European format, the value must be

included in single quotes within the select attribute (effectively assigning it as a string). For

example:

<xsl:variable name=”value” select=”'10,5'”> is valid

<xsl:variable name="value” select=”10,5”> is invalid

The File and Report Generator utility ensures that any user variables of Double type defined in a style
sheet (recorded as number values using a dot as the decimal point) are presented for user modification
using the appropriate locale settings when the style sheet is applied. The modified value is then written
back to the style sheet definition in memory as a numeric value using a dot as the decimal point again.
This ensures that these values can be used directly as numeric values within the style sheet without

Creating Custom Files and Reports for Origin Software | 9

need for the translate function, but will still be presented appropriately within the context of the
program.

format-number() function
The format-number(number, string, string) function is used in conjunction with the <xsl:decimal-
format> element to present appropriately formatted numeric values in output files. The function
returns a formatted string version of the number (first parameter) passed in based on the formatting
strings. The first string (second parameter) defines the actual format to be used for the number and
the second (optional) string (third parameter), specifies a decimal format name specified in a
<xsl:decimal-format> element. If no decimal format name is specified the default decimal format
using a dot for the decimal point and a comma for the separating character, and returning ‘NaN’ for null
values is used.

The format string uses the #, 0, dot and comma characters to define the way values should be
formatted. The # character indicates a digit, and the 0 character indicates that zero character should
be displayed when it could have been left out, for example, as trailing decimal digits.

The following examples show the behaviour of the format-number() function:

l format-number(5351, “#.00”) returns “5351.00”

l format-number(0.5351, “#0.000”) returns “0.535”

l format-number(24535.2, '###.###,00', 'European') returns “24.535,20” when the European decimal

format is defined as:

<xsl:decimal-format name=”European” decimal-separator=',' grouping-separator='.' />

<xsl:template> element
The <xsl:template> element defines a reusable template (or sub-routine) that can be used for
generating the required output, or carrying out some specific action. If the template is being used to
deal with a given node of the JobXML file (data value or values in a JobXML file), then the match
attribute is used to specify the name of the node to be matched and therefore processed. If the
template is being used to carry out a specific user function sub-routine operation (for example,
carrying out a computation or reformatting some text) then the name attribute is used to assign a
name to the sub-routine. It is possible to assign a name attribute and a match attribute to an
<xsl:template> element, but this would not usually be done.

An <xsl:template> element that specifies a match attribute is typically called using the <xsl:apply-
templates> element, with the select attribute set to the node to be matched by the template. The
select attribute may actually be an expression (for example the current() function that returns the
current node in the XML file) as long as the expression returns a node reference. When the <xsl:apply-
templates> element is used, the current node in the XML file is automatically set to be the first

Creating Custom Files and Reports for Origin Software | 10

referenced node. Any appropriate processing of the data in the matched node (for example, the output
of specific values located in or under the matched node) can be carried out within the template
definition.

An <xsl:template> element that specifies a name attribute is typically called using the <xsl:call-
templates> element, with its name attribute set to the specified name of the template. It is possible to
pass parameters when using the <xsl:call-templates> element to invoke a named template.

These parameters must be passed using the <xsl:with-param> element as shown in the following
example. This example shows the definition of an <xsl:template> element named Add that defines two
parameters called Parameter1 and Parameter2, and which returns the sum of these two parameters.
The example also shows the definition of a variable called Sum that calls the Add template passing it
the values 10 and 20 as Parameter1 and Parameter2 respectively. After calling the template, the
variable Sum will hold the value 30.

<xsl:template name=”Add”>

<xsl:param name=”Parameter1”/>

<xsl:param name=”Parameter2”/>

<xsl:value-of select=”number($Parameter1) + number($Parameter2)”/>

</xsl:template>

<xsl:variable name=”Sum”>

<xsl:call-template name=”Add”>

<xsl:with-param name=”Parameter1” select=”10”/>

<xsl:with-param name=”Parameter2” select=”20”/>

</xsl:call-template>

</xsl:variable>

<xsl:value-of> element
The <xsl:value-of> element is used to insert (output) as a text string, the node or data referenced by
the select attribute, into the output file being created. If the <xsl:value-of> element is used within an
<xsl:variable> or <xsl:template> element, then the data referenced by the select attribute will be
assigned to the variable or return value of the template.

The following examples show uses of the <xsl:value-of> element:

l <xsl:value-of select=”'This text'”/>

returns ‘This text’

Creating Custom Files and Reports for Origin Software | 11

l <xsl:value-of select=”concat('This text', ' and this text')”/>

returns ‘This text and this text’

l <xsl:value-of select=”current()”/>

returns the contents of the current node as a text string

<xsl:for-each> element
The <xsl:for-each> element repeatedly selects each available node matching the specified select
attribute. Any XSLT transformation instructions within the <xsl:for-each> element definition will be
applied to the currently selected node from the XML file – effectively like the <xsl:apply-templates>
element.

The default behavior of XSLT transformations is to work with node sets, which are all the matching
nodes at a given level within the XML file being transformed. This can make it difficult to step through
the FieldBook node of a JobXML file in the record sequence (chronological order), for the purposes of
writing out the data in the order observed. However, using the <xsl:for-each> element with the ‘*’
wildcard, and the current() function, allows this to be done as shown in the following example.

In this example the name() function is used to return the name of a node (in this case the current()
node) in the XML file being transformed:

<xsl:for-each select=”*”>

<xsl:choose>

<!-- Handle Point record -->

<xsl:when test=”name(current()) = 'PointRecord'”>

<xsl:apply-templates select=”current()”/>

</xsl:when>

<!-- Handle Station record -->

<xsl:when test=”name(current()) = 'StationRecord'”>

<xsl:apply-templates select=”current()”/>

</xsl:when>

<!-- Handle BackBearing record -->

<xsl:when test=”name(current()) = 'BackBearingRecord'”>

<xsl:apply-templates select=”current()”/>

Creating Custom Files and Reports for Origin Software | 12

</xsl:when>

</xsl:choose>

</xsl:for-each>

<xsl:key> element
The <xsl:key> element can be used to speed up the location of nodes within an XML file being
transformed. An example of where this can provide a significant performance benefit is when an XSLT
transformation is stepping through a set of nodes, and needs to regularly locate output data from a
different node set. The supplied Origin XSLT style sheet for creating GDM job format files uses the
<xsl:key> element to index the IDs of target records in the JobXML file. As the transformation works
through the FieldBook section of the file (in chronological order), it can quickly locate the appropriate
target height for each point.

The <xsl:key> element must be defined as a top level (global) definition, and in the GDM job format file
style sheet, the following <xsl:key> element is defined near the start of the file:

<xsl:key name=”tgtHtID-search” match=”//JOBFile/FieldBook/TargetRecord” use=”@ID”/>

This <xsl:key> element defines a key called “tgtHtID-search” and indicates that it should index the ID
attributes of all the TargetRecord nodes under the FieldBook node in the file.

As a PointRecord in the FieldBook section of the JobXML file is transformed, the “tgtHtID-search” key is
referenced as follows:

<xsl:for-each select=”key('tgtHtID-search', TargetID)”>

<xsl:value-of select=”TargetHeight”/>

</xsl:for-each>

The key() function is used to call the defined “tgtHtID-search” key and the TargetID for the current
PointRecord is passed to the function. If an indexed reference to the TargetID is located in the
“tgtHtID-search” index then the appropriate node, from the specified node in the <xsl:key> element
definition, is returned and, in this case, the TargetHeight value from the element is used.

Node name matching using XPath syntax
The Root node is the top level node in an XML file and is referenced as the “/” node. The match attribute
match=”/” will select the root node of an XML file. If a node reference is prefixed with the “/” character,
then the node selection will start from the root node – this is referred to as an absolute location. If the
node reference is not prefixed with a “/” character, then this is a relative location and the currently
selected node is used as the starting point for the node reference location.

Creating Custom Files and Reports for Origin Software | 13

Nodes under the root node are referenced by specifying the appropriate node names separated by “/”
delimiters. In the case of JobXML files, the following node sets are selected using these match
attributes:

l match=”/JOBFile/FieldBook” selects the FieldBook node.

l match=”/JOBFile/FieldBook/PointRecord” selects the node set of all the PointRecord nodes

(elements) under the FieldBook node.

l match=”PointRecord” selects the node set of all the PointRecord nodes under the currently

selected node.

If the currently selected node is the /JOBFile/FieldBook node, then the result is the same as in the

previous example.

l match=”.” will select the current node; the same result as specifying current().

There are many other functions available for referencing nodes in an XML file, and these can be located
in a suitable help file such as the documentation associated with the MSXML SDK. However, the brief
summary above should provide a starting point for XML file node referencing.

Using the node-set function
The node-set function is an extension function that is very useful when assembling data for export
prior to final output. You can add a series of elements to a variable created within the style sheet, and
then treat this variable as a node set using this function. This mechanism lets you use the standard
XSLT functions for manipulating and exporting this data.

Before you can use the node-set extension function, you must add an extra name space reference
(msxsl) to the <stylesheet> element at the start of the style sheet definition. This means that the
<stylesheet> element will be defined as follows:

<xsl:stylesheet version=”1.0” xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
xmlns:msxsl=”urn:schemas-microsoft-com:xslt”>

The following example shows how a variable can be created within a style sheet, have elements added
to it, and then be treated as if it is a set of XML nodes using the node-set function:

<xsl:variable name=”Nodes”>

<xsl:element name=”Data”>

<xsl:element name=”Val1”>10</xsl:element>

<xsl:element name=”Val2”>15</xsl:element>

</xsl:element>

Creating Custom Files and Reports for Origin Software | 14

<xsl:element name=”Data”>

<xsl:element name=”Val1”>12</xsl:element>

<xsl:element name=”Val2”>18</xsl:element>

</xsl:element>

<xsl:element name=”Data”>

<xsl:element name=”Val1”>8</xsl:element>

<xsl:element name=”Val2”>11</xsl:element>

</xsl:element>

</xsl:variable>

<xsl:variable name=”Val1Average”>

<xsl:value-of select=”sum(msxsl:node-set($Nodes)/Data/Val1)

div

count(msxsl:node-set
($Nodes)/Data/Val1)”/>

</xsl:variable>

<xsl:variable name=”Val2Average”>

<xsl:value-of select=”sum(msxsl:node-set($Nodes)/Data/Val2)

div

count(msxsl:node-set
($Nodes)/Data/Val2)"/>

</xsl:variable>

<xsl:value-of select=”concat('Val1 average = ', $Val1Average,'

Val2 average = ', $Val2Average)”/>

Typically, the data for the elements added to the variable, later treated as a node set, will be extracted
from the JobXML file being transformed. The <xsl:copy> and <xsl:copy-of> XSLT elements can be used
to copy specific elements from the JobXML file into the node set variable.

Creating Custom Files and Reports for Origin Software | 15

	Introduction
	Custom import/export file formats
	Custom reports
	Style sheet definitions
	<xsl:stylesheet > element
	<xsl:output> element
	<xsl:variable> element
	<xsl:decimal-format> element
	<xsl:template> element
	<xsl:value-of> element
	<xsl:for-each> element
	<xsl:key> element
	Node name matching using XPath syntax

